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" The language of numbers, hke any language, has its own alphabct.
* In the language of numbers that is now used virtually worldwide, the
alphabet consists of ten digits, 0 thrcugh 9, This language is the decimal

-number system. But this language has not always beendised universajly.

From a purely mathematical point of view, the decimal system has no
inherent advantagcs over other poSsible number systems; its popularity
is due.not to mathematical principle, but to a set of historical and
biological factors. : .

In recent times the decimal system has received serious competition
from the binary and ternary systems, which are “ pmferred ” hy modern
‘computers.

In this pamphlet we will discuss thc origin, propemes and apphca-

tions of various number systems, The reader need not be familiar with .

mathematics beyond that covered in the high school curriculum..
‘Two sections (9 and 11) have been added to the second edition, and
several minor correctiomrs have been made.,
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1. Round and Unrounded Numbers

TA man about 49 years old went out for a stroil, evaiked down the
street for about 196 meters, and went into a store; he bought 2 dozen
eggmhere and then continued walking. . . .” Doesn’t that sound a little
strange 7 When we measure something approx:mately, such as dlstancc -
or someone’s age, we always use round numbers and ordinarily say -

« 200 meters,” ** 50-year-old man,” and the like. It is simpler to operate
with round numbers: They are easier to remember, and arithmetical

, computations are easier to perform on them. For.example, no one has -
trouble multiplying 100 by 200 in-his head, but multxplymg two un- |
reun three-digit numbers, such as 147 and 343, is so difficult that
almost no one can do it without pencil and paper. .

I king of round numbers, we do not normally realize that the
divisionof numbers into “round” and * unrounded " is dependent on
the wak in which we are writing the nutnber or, ds we u_suaiiy'say, which
number system we are using. In investigating this matter, let us first_
examine™the décimal number system, which we all use. In this system

.. every positive integer (whole number) is represented in the form of a
-sum of ones, tens, hundreds, #ud so on; that is, in the form of a sum of :
powers of 10 with coefficients which can assume the values 0 through 9.
For example, the notation 2548 denotes the number consisting of &

ones, 4 tens, 5 hundreds, and 2 thousands; so that 2548 i§ ap abbreviation

of the expression . L.
C L 2000 4 5108 4 4100 + 8-10°
: ¢

However, we could, with the same success, represent every numpber in
the form of a combination of powers, not of the number 10, bqt of any
other positive integer (except 1); for example, the number 7. In this

i . : et
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2 o Round dnd Unrounded Numbers

system, the so-callediheptary number system or the number system with .
base seven, we would make calcylations from 0*to 6 in. 81 ‘usual -

marner, but we would take the nuhber 7 as a unit of the next order.
In our new heptary nnmber system this number is naturally designated

. L 10

(a unit of the second order). So that we do not confuseshis des:énation
with the decimal number 10, we attach the subscrxpt 7, so that for seven
we write .

D P T o).

Units in the succecdmg places serve to denote the numbers 72, 78, and
sQ forth, They are designated '

-r.

(100),., (1000)q , etc.

We can represent any positive integer by combinations of powers-of
seven; that is, any positive infeger can be expressed in the form  *
- .

N A

{ . .
a7+ a7+ 4+ a7 + a,

N )
where each of the coefficients ao, a,1 . . ., @, can assume any whole value
from 0O to 6. Just as in &he decimal system, it is natural to drop the
writing of the powers of the base and to write the numbeggin the fogym

{
again using the subscript to indicate the base of the number system
that we are using --in this case, 7.

Let us look again at our example. The decimal number 2548 can be
represented as \ \

(@i y - aya0)q

1-74+0-73‘.+.3~-72‘+ 0-7+0, v
or, using our notation, as .
| (10300), - )
Thus, } - | T S

(2548);0 = (10300); . ‘ .

S
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T e \ ‘ Fk’Origm of the Decimai Number System , 3

We note that round numbers in the new heptary number system will
be complctcly different from round numbers in thc decimal system,
Fomexample,

-

: e ‘ ' (147)10 = (sm)? * . °
¥ . ' i (343)13 = (I(X)O)q ' '

¢

(smcc 147 {-73 and.343 = 7"), at the same txme,

| (100)m = (202)7 )
.o (500)xo = (1313)«: »

and so fotth. Thgrefore, in hasc seven, multxplymg (147)m and (343);0
in your head i§ simpler than multiplying (100),, by (200),¢. If we used
the base.seven system,’an gge of 49 years (and not 50) wouldundoubted-

o ly be,taken as “rounded data,” and if we said *‘98 meters” or “196
' ‘neters,” it would naturally be taken as an estimate by sight (since
. . (98)y = (200), and (196),, = (400), are round numbers in base seven).

We would count obje‘cts by sevens rather than by tens; and so on.
) >\ . In short, if the base seven system were generally aweptcd the sentence
with which we began would surprise no one.

However, the base seven system is not widely used and can in no way
compete with the decimal system, which is used everywhere What is the
reason for this? . o : :

¥

. 2. The Origin of the Decimal Number System”_ .

+«  Why does the number 10 play such a privileged role? Someone far
oved from these questions would probably angwer without thmkm’g,
- “I easy to work with the number 10—it js'a round number; it is easy
< to multiply by any number; and, therefore, it is easy to cdunt by tens,
~ hundreds, and so on.” But™We¢ have :alreddy seen that the situation is
actually reversed: The number 10 is round only because it is.used as the
base for the number system. In the-transition to another number system,
. say the heptary system (where ten is written (13)7), the “roundness” of
10 disappears. -~
" The réasons why the detimal system has had such general acceptance
. are not at all mathcm&xcal The ten fingers of two hands were man’s
first mechanism for counting. It is convenient to cQunt from one to ten .
dn the fingers. After counting to ten, completely using up our, natural .
‘ “countmg apparatus,” it is natural to take the number 10 as a new,

larger unit (a unit of the next higher or }er) Ten tens comprise a unit
' A .

£
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4 ‘ Othc.r Number Sy§tems and Their Origins
of the tmrd order,'and so on. Thus, 1t is because of man's ten~ﬁngcrcd

-

ongmated ’ ’

3. OtheanmberSystemsnd'I‘beirOrigins -

The decnnal system did not always occupy thc dominant position.
In various historical penods many peoples used, number systems other
& : ‘ than the decimal. At one time,-for example,
o ’ odecimal system rather

- widespread/Its origin is .also oubtedly
| ith counting on the finggrs. The
s of the hand (excluding the thumb)
have a total of 12 phalanges (fig. 1), so that
by using the thumb to count off "these

- phalanges in turn, a pefson could count from

order, and so forth. The_duodecimal system
has syrvived il language-to this day: Instead
of saying * twelve'we often say *‘a dozen.”
Masy objects (kmves, forks, plates, handker-
chiefs, and the hkc) are more often ‘counted
by dozens than by tens. (Recall, for example, that a service is, as a rulc

. for 6 or 12, and much Iess often for 5 or 10.) Even now the word * gross”

is occas:onally used, mcanmg *a dozen dozens” (that is, a unit of the-
third order in the duodecxmai system), and several decades ago it was
widely used, especially in the sworld c'fcammcrce A dozen gross was
called a “mass,” but now this meaning of the word ‘mass” is known
to few.!

The English have nnquest:onable remnants of the duodccxmai syst:m
—in their system of measures (for example, foot = 12 mches) and in
their monetary system where 1 shilling used to. equal 12 pence..

Let us remark that from a-mathematical pomt of "view the duo-
decimal system would have several advantages over the decimal system

in that the number 12 is divisible by 2, 3, 4, and 6, while 10 is divisible -

only by 2 and 5; in general, a large stock of divisors of the base of the
number system assures certain convea%xces in the use of that systern.

We shall return to this quesuon in secfion 7, when we discuss tests for -

dxvxsxbmty
-
1. However, it is possibly the source of such common expressions as a ‘‘ mass
of men™ (compare it with the expression ** & thousand men™).

B ‘counting that the demmal system, which néw seems’ self-explanatory,

- 1 to 12. Then 12 is taken as a unit of the néxt.

.
I3
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"' Other Number Systems and Their. Origins .

B In anciens Babylon, where civilization and mathematm wero rather” -y
.advanced, a highly complex. base sixty system was used. Historians ~
- differ in their explanations of how such a system arose. One of the . \(f

, hypotheses, though it is not particularly believable, states that there
E - was,a mingling of two tribies, one of which used the base six system and
~ the other the decimal system. The base s;xty system then arose as a e
_compromise between,these two systems. VA
. * Another<hypothesis is based on the Babyloman calculation of the -
- A " year. Although Babylonian astronemy was sufficiently advar®sI'so that: :
- " the Ienthhc year could be calculated- exactly, thé Babylonians  «
found it convenient to designate a period of twelve thirty-day months
as a ™ year,” with an extra month added to every sixth year (except for
- occasional corrections). A year of 360 days naturally leads to the“
.niimber sixty, since 360 is six times sixty. It Has been suggested, however,
that the convenience of: the 360-day year is itself a result of the Baby- .
~ lonian use of the sexagesimal system.’ Although the origin of the sexa- e
gesimal system remains obscure, its existence and widespread use in
Babylon is well established. This system, like the duodecimal, survives
_ to a certain extent in our time (for example, in the division of the hour
into 60 minutes and the minute into 60 seconds, and in the analogous .
v system of measuring angles: 1 degrec = 60 minutes, 1 minute = 60

seconds). On the whole, however, the Balylonian system, although ‘t, ) y .
did not require the use of sixty different “digits,” is rather cumbersome " :
and Jess gonvenient than the decimal system. e

- < According to fhe evidence of Stanley, the explorer of Africa, in a

- ~ numbeg of African tribes the base five (quinary) system of counting is

- ‘widely used. The connection of this system with the structure of the
-Ruman hand is clear enough.

The Aztecs and ‘the Mayas—peoples who lived for many centuries
in wide areas of the Ameriaf-continent and who developed a highly
advanced civilization which was almost completely destroyed by the
Spanish conguistadors in the sixteenth and seventeenth<tenturies—
used therbase twenty system. The same base twenty systenr®was used
by the Celts, who lived in Western Eutope beginning in 2000 B.C. Some
traces of the Celts’ base twcn%systcm remain in the French language -
of today. For example, “eighty”.in French is quatre-vmgt~hterally
*“four twenties.” The number M also used to occur in the French
monetary system: The basic monetary unit—the franc—was divided
into 20 sous.

Of the four systems of counting cited aboyg (the duo&oclmal quinary,
sexagesimal, and base twenty), which, along with the decimal, have
played an appreciable role in the development of human civilization,

‘Fg
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6 v ' Positional and Nonpositional Systems . |
all (except the sexagesimal, whose origin is unclear) are connected in

.t . some way with counting on the fingers (or on the fingers and toes);
that is, like the decifmal system, they undoubtedly h‘ave an "ana-

~ v

© torhical” origin. " ‘ SN o

. As the aboye examples show (their number could. hawc been en- .
" l4rged), numerous.traces of these systems of counting have bgen pﬁ '
£ s;:rved in our time in the languages ‘of many peaples, in monetary
" systenis, and in systems "of *measure. However, in notation and in
. calculation, we always use the decimal systém. « -

'r
-
-

4. Positmnal and Nonpos:tmml Shw

-«
. Cos Ali\e systems of counting which we- dzscussed above are’ bascd o
S one general pringiple. Some number p “Is chosen—the base of the '
... number systemqand every number N is Tepsesented in the form of «
~ combinations of its powers with coefficients selected from 0 to p — J,. - _'
- that is, in the form , S ' "‘( - - ‘

. .
. . . - "
[ N . -

‘ . . @ pf + ak—lpk:z *""*’F:P-'{‘ ady. .-

(Thcri%he number is written in the shortened,form

[ . . : I

v o ' (@, 'axao)p; ‘ s
/4 ’ : . ~
, ~ In this notation. the value.of each digit depeids on the plage that the
M digit occupies. For example, in the number 222, two occurs™fhré® times.

But the first digit from the right reptesents two units, the secand from
the right—two tens (twenty), and the third- —~two hundreds. (Here we
have the decimal system in mind. If we used another numberssystem,
-saywith base p, these three twos would represent the values of 2, 2p,

. and '2p3, respectively.) Number systems constructed in this way a
X called positional. )
b "Other number systems exist monpasztzanal number systems con-

structed on different principles. A well-known example of such a system
is the Roman numeral system. In that system there are several different
basic symbols:, the unit I (one), V (five), X (ten), L (fifty), C (hundred),.

. and so on—and every number is represented as a combination of tkese
symbols. For example, in this system the number 88 is

. - . LXXXVIIL. .

-

&
v, TInthis system the meaning of agymbol does not depend on the piace%fh
which it stands, except when a letter of smaller value is placed to the

-

te
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Arithmetic Operatigns in Ifgzrfaus Number Systems 7.

left of one wifh larger value. {n that case, the poéition‘ of the letters is

important. For example, the pxpression 1V denotes the number four,
‘while VI denotes the number six, In general, though, a ngcn lctter will .-

denote the same value regardless of*placement; in the repye’kntatmn of
the number 88 above, the symbol X occurs thrée times, each time de-
noting the same value—ten units. . . - )
" We often erkcounter Roman numerals ‘today—on clock faces, for
: cxam;gc they dre not used in mathematical practice, however. Posi-
txona},;gﬁte}r:s are more convenient because they allow us to répmsent
large numbers using refatively few symbols, A mgre important advan-

. tage of a positional system is. the smphcxty of performing arithmetical -
" operations on numbers written in such a system. (Try, for comparison,

to multiply two thrée-digit numbers written in Roman numerals.)
From now on we shall consider only positional systems.

- .
* . £

~ . 5. Arithmetic Operaﬁons in Varicus Number Systems .
. A

For numbcrs wntten in the decimal S);stem, we use a *“columnwise”

method for addition and multiplication, and a * diagonal”’ method for
~ adivision. These rules are completely applicable to numbers wntten in
any pdsitional system.

Consider addition. In the d‘ecxmal system as well as in any other
system, we begin by adding the units, fhen go to the next place, and so '
on, until we reach the highest available place. We must remember that
every time the sum in a preceding place has a result greater than or
equal to the base of the number system in which it is written, we must
carry over to the next place. For example,

1y (3651,
+ (17043);

(42714),

(2) (423 '
(1341),
+ ( 521)g .

A ' RSN

A

-

- We now turn to mu}txphcanon For thegake of definiteness, we choose -

a specific system, say th&hexary (base six). The basis for multxphmtmn
of any two numbers is a multiplication table that determmes the

.




8 Aﬁthmeuc Qpemtions in Variods Number Systems ' .
product of any two numbers smaller than the base of she system It is _
not hard'to verify that the mult:phmtmn tablc for hasc six looks like .-
I'.v',t'-...‘.?‘.‘ o | l' 0ol 1 i 3 %"‘5_ . L i
- : olo| ol 5ofl ol oo} -
| ROACR SRR A O J B RN .
Soj2lo) 2] aj0]2 e ;.
- 3ol 3[1w0] 13|22 .
4 0 4 124 20| 24 | 32 B
s] o] s 14 23| 2 |4
‘Here eiery square contains the product of the numbers of the row and | . &y
column on whose intersection the square les, with all numbers written -+

in base six (we have, omitted the subscripts in order to make the table . .
more compact). .
- Using this table, it is easy to multxpfy by columns numbers containing

.any number of places. For example, _ .

~ o @ o
L X @), -
* (3124),

(2333,
(1144); | !

(145244),

L3

Dividing *“diagonally " is also possible in any number system Con-
_sider a proble’m like the following: '
" Divide (120101); by (102)s .
The solution is
. (120101)s  [(102)s
‘ (102); « (1101),"

(111, x g

(162); |

¢ (201),
- (102)

(22),




. ¢

- Problem 2. en we asked a teacher how many pupils were in his
: dlass,” he anss vered,. *‘One. hundred chﬂdren——24 boys and 32 girls.” -
* At fxrst i€ answer astonished us, but then'we ‘realized that the teacher KEy
was simply usmg a nondecm;ai systcm What system did he have in R
. mifid? : ~
~ The solution to this prob.lem is pof comphcated Let x be the b R
~ _of the ﬁumber _system we are seekmg Then the teacher’s words m?l
-+ that ,}:@*has A pﬁpxls of whom 2x + 4 ate boys and 3x + 2 are girls..
Ihus @ s T .-
' 2x+4+3x+2=x°,

x2-5x-6=0,

G —6)(x+1)=0, /

- or, by the quadratic formula, -

A yielding-

. /
S35+ 24) 5+ 7 /

| 2 T2 M
either method yields ' “

' X, =6,x = —1.
Since ~'1 cannot be the base of a number system, x = 6. Thus, the

e

i . teacher's answer was in the basc six system, and he had 36 pupils
16 boys and 20 girls.

6. Translating Numberskfrom One System to Another

How do we transiate a number written in one system, say the decimal,
into andther system, say the base seven system? We already know that
tq write a number A in base seven is to represent it as the sum:

A——Gk7k+ag;7k1\“ +al7+ag

?
3
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T nslat g Nu ngé from Oné System to Another .

é
inforder. Pﬁnd the representatxon of the number A to the
¢ seveq, we t d t?!'fmd the coefﬁc:ents o, @, - . ., Ay, €ach of which

(in ntcgg ). THe remainder m thxs dms:on is ciearly equal to ao,
, injthe fepresehtation of A, ali tbe terms Lxcept the last are evenly

'cnﬁ'y Wri ten to t}{e bas¢ 7, the number 3287 has its last digit equal
) é% next-to-last digit, we divide our quotient 469 again by
gfiotient of 67 and a remainder of 0. Consequently, the
ne;&t tO‘Jaﬁt;digit of theqrumber 3287 to the base 7 ig 0. Further, we
dxyxgle 647 by 7, obtaining 9 with a remainder of 4. This remainder of 4

epfreserts the third digit from the end of 3287 written to the base seven.
‘izally, wetdivide the last quotient 9 by*7, getting a remainder of 2
nd 4 quot)

r\%of 1. The remamder of'2 gwcs us the fourth digit from

nger divi
'gi‘p. Thus,

by 7) represents the fth digit> from the end (the first

| PO N

c iight side of this equation is an abbreviation of the ex'f)ression
T ¢ 17+ 277+ 47 +07 + 4,

is an abbreviation of the expression
O 300% 4 2107 +8-10 4 7. -

Thekcomputations that wé used for translating from the decimal repre-
~ sentation of the number 3287 into its representation to the base seven
arc conveniently arrariged as follows:

32871 7
4 469 | 7
) 0 67| 7
—
. 4 91 7
21
_‘ l/

S (3287, (12404), - 0 X

)
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" ;‘ ot T?anslatmg Numbers from One System to Another ‘11
Everythmg that we have said above clear,ly applies not only m the
hase seven system, but to any other such system. A general rile for

/thaimng the represemtxon of some number A4 in the number system
* with ‘base p can be formgiated in the following way: Divide the number

A By p in integers; the ainder thus obtained will be the last digit of
the base p representation- of the number A. Dividing the quotient’

.obtained from this division again by p leaves us a second remainder;
- this will be the digit that occupies the next-to-last place; and o forth.

base of the system That quotient is the dxgzt that occupies the, ghest
piace - - DR I
. Let us consider one moge example. The problem i :s to wnte we num-

The process continues until we obtain a quotient smaller th;%p the

"*--‘-ber 100 in bmary notation. We obtain:

-

.~ ‘100‘!\2 S >
i & ; . AN '
0 50| 2 A -

- 0 25

that is, “ *

- -

(100);0 = (1100100)5 .

One constantly encounters the problem of translating numbers from
the decimal to the binary system when working with computers, a
subject about which we shall have more to say later. '

In the examples we have considered, the original number system

‘has been the decimal system. We can, however, translate numbers

from any given system to any other by the same means. To do so, we ,
need only note that the process of successive divisions carried out in the
above examples can also be carried out in any base in which we are
given the original number representation. » -

Problem. Let us assume we have a scale (with two pans) and weights

. of 1 gram, 3 grams, 9 grams, 27 grams, and so on {(one dbject of each

weight). Using only this equipment, is it possible to weigh any mass to
within an accuracy of one gram? The answer is yes. We shall present

o & n
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12 . Translating Numbers from One System to Another

,i.' / the solution here, relying on. the representation of posmve integers in

the térnary system. Suppose the pobject that we wish to weigh weighs 4
grams (taking A as°an integer). Wc can write the number A4 m the
tcrnary system as

= (Ay@n-1" " *B1do)s » DA

" thatis,. I S

- f ) A = a", . +aa‘_1.3‘_1 +..f‘\-f-%1.3A+ Qo , - N

e ‘coefficients aq, ay, . . ., a, can-assume values of 0, 1, or .2,

i’ possible, however, to write each number in the ternary'system -
somewhat differently, so as to use the digits<), 1, and — 1 (instead of%0,
1, and 2). We utilize such a system as follows: We trandlate the number
A from the decimal to the ternary system, using the method of succes-

~ sive divisions that we described earlier, except that every time we
divide by 3 and get 2 rcmamder of 2, we wxll increase the quoncnt by

- l¢avmg a remainder of —1. .
| As a result, wg‘pumn the number A in the &)rm ofa sum
<. t ‘
A =g 3" + buye 3 s + b4 be,

where each of the coefficients b,‘, By 1, ..., by can assume g, value of
0, 1, or — 1. For example, the number 100, wh:ch in the usual ternary
notation, would have been 10201, would have the form 11(—1)0! in
this variation, since

(100),0 = (10201)g = 3* + 3% — 3% + 1.

, Now, we put the mass weighing 4 grams on the first pan of the scale,
and we put a weight of one gram on the second pan if b, = 1, and on

the first panif b = —1. {If by = 0, we do not use the first weight.) Con-
tinuing, we put the 3 gram weight on the second pan if 4, = 1, and on
the first if b, = — 1, and so on. 1t is easy to see that if we arrange the

weights in this manner we can balance the weight 4. And so, with the .
help of weights of mass 1, 3, 9, and so on, it is possible to balance any
integral mass on the scales. If the wexght of the mass is unknown, we
choose a distribution of weights that balances the mass and thus
"determines the weight.

]

..



&

| Tesss for Dioisibiluy, - 13
L Lét us clarify our discussion with an example. Suppose we have a
mass weighing 200 grams. Translanng 200 into temary notation in the .
usual way, we obtain - . '
o o 200 3 o o B |
. 2 66] 37 . ‘
0 213 S .
1 7|3 - .
v o ‘ . 1 2 R
Conscquently,g\ o h . | _I ‘
. (200);0 = tzuoz)s,
or, in greater dctadé] . )

v L 'q'. |
‘ ﬁm~2?+1?+1?+03+2' _ﬂﬁlﬁ

If 200 is translated into ternary notatmn of the second type, usmg**l

- and not 2, weobtmn- - , -
"e‘ - L ! %Li o | . . .
: ) 1 22]3
. ° 173
A N o1

‘that s,
=135~ 1.3+ 1.3 + 1.33+ 1,3 - 1.

(The validity of this last.equality is easily verified by \{irect calcujation.)

So, in order to balance a mass of 200 grams placed on a pif the
scales, we need to put weights of | gram and 81 grams on the same pan
and weights of 3, 9, 27, and 243 grams on the other pan.

7. Tests for Divisibility -

There are simple tests that permit us to detertine whether a given
number is divisible, for example, by 3, 5, 9, and so forth Let us recall
those tests:




»
e
T
1 ¥

o w s Tmsfoxn.vmbmcy

1. Test of divisibility by 3 A number is divisible by 3if and only if
the sum of its digits is divisible by 3. For example, the rumber 257802
(in which the sum ofdxgxts is2+5+7+ 840+ 2= 29 is divis-

‘ible by 3, but the number '125831 (in whxch thc sum of digxts is 20) is not
divisible by 3.-

2. Test of divisibility by 5. A numbqr is divisible by 5 if and only if
“its last digit is either O or S (that i is, if and only if 5 divides the number
of um in the last place). ° .

t of dmmbdzty by 2. This 'test is analbgous to the xmmedxately
precedmg one: A-numbser is divisible by 2 1f and only if 2 dmdes the
number of units in the last place.

I .. 4. Test of.divisibility by 9. This is analogous to the test of divisibility
o by 3: A number is dms:{)lc by 9 1f and only if the sum of its dlgxts is

dwxsﬂ‘e by 9. . {

Proof of tht validity of these tests presents no dxﬁiculty Let us exam-
ine, for example, the test “of divisibility by 3. Itds based on the fact lhat
the units in each placc in the decimal system (that is, the nymbers 1,
- 10, 100,, 1000, and so on) Teave a remainder of 1 when divided by 3.
. . Therefore, since every number .- -t

9 N . (@x8x-1-" *31B0)10 »

. . : that is, everif number

N

ag 10“ + aﬂ 1 10“ 1 + + al"lﬂh'{- abﬁ"!

can be written in the form : ’ . 4

(@n + ap-y +- -+ ay + a))+
[a, (10" — D) + @, _(10*"t = 1) + -+ a(10 — 1) + ao{l — 1),

and since (10% ~ Nfork = 0,..., nis divisible by 3, we may write our
number in the form '

(@ + Gu_y +---+ a; + ay) + Bf p
where B is evenly divisible by 3. It is clear, then, that the number
a,- 10 + Gy 1-10°"1 ... 4 g,-10 + a,
is divisible by 3 if and only iff 3 divides the number
" ' .a,-,(+a,_1+--~+ ax+eao.'

. /‘ * ‘ >
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For ;xample the decirnal number 4851 can be wnttcn

- 3

4%1~4mm+szw+sxo+1 : :
L =499+ D) +8(0+1)+50+ 1+ T |
~4+8+5+1+(4999+899+59) ’

=4+8+5+1+8,

»
.

where B is dms:ble by 3 Thus since 3 dmdes 4+ 8+ 5‘+ 1= 18

. 3 must divide 4851, )

7 the!base of the number

/The test of divisibility,by § is- bas‘ad on the fact that the nmﬁber 10—
\yseém—zs divisible by 5;.therefore, all the
powers of ten from thc first .on are divisible by 5. Therefore, if a number
is to be divisible by 5, its last digit must yield a remainder of 0 on divi-
sion by 5. The test for divisibility by 2 has the same Rasis: A number is
even if and only if its last digit is even.
The test of dxvxszbzhty by 9, like.the test of dms:bﬁxty by 3, is based
on the fact that every number of the form 10 leaves a remainder of 1
. A
when divided by 9.
From th discussion, it is clear that all these tests are-based on décimal -

- representation of integers, and\that they are, generally speakmg_,m—

apphcable if we use a different numbet system. For &¢xample, the

mm\lber 86 fs-written to the base*s in the form _

CON - -

L

" (since 86 = 8% + 2.8 + 6). The sum of the digits is 9, but 86 is divisible

by neither 3 nor 9.
However, in any positional syst.em it is possxblp’ % formulate tests fog

divisibility by various numbers. Let us consider a few examples.

We shall write numbers in the duodecimal system and formulate, for
that notation, a test for divisibility by . Since the number 12—the base
of the number system-—xs divisible by 6, a number written in the duo-
decimal system is disisible by 6 if and only if 6 divides its last digit. (We

" have here the same \ituation as for divisibility by 2 and by 5 in the

decnﬁ’zﬁ—;ystem ) '
Since the numbers 2, 3, and 4 also dmde the number 12, the following

divisibility tests are valid: A number to the base,.lz 1s divisible by 2, 3,

or 4, respectively if and only if its last digit is divisible by 2, 3, or 4,

respectively.
We leave it to the reader to check the validity of the following divisi-

bility tests in the duodecimal system: '

“\D
oo
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16 . / Tests for Divxslbihty |

a. The number A = (GyGy -1+ - 8:80):15 15 divisible by 8 if and only if
the number (a,4,),, (formed by the last two digits of A) is divisible by 8.
(Hint: 8 is a divisor of 12? = 144, so that all the powers of 12 from the-

-second on are divisible by 8.) \

b, The number A = (a,a,_; ~Jayae),5 is divisible by 9 if and only
if the number (a;a,),; (formed by the last two digits of A) is divisible by
9, (Hint: 9 divides 144.) &

c. The number A = (@,a,_1- - - @18p)13 iS divisible by 11 if and only
if the sum of its digits ¢the number g, + ay; + -+ + @, + ap)fs divis-
ible by 11. (Hint: 12* — 1 is divisible by 11 for k = 0,.. .,({‘l, since

_12“—1~—11 126-1 4 11.12%-2 +... + 11.12.+ 11)

Let us opnsider two more problems connectcd with the divisibility of "
numbers. . _

Prab[em 1. The/number (3630), (wntten in base p) is divisible by 7.

- What is p, and what is the decimal reprcsentatnon of the number A if we

know that pr<_ 127 Will the problem’s solutlon be umque if the con-
dition p < 12 is not-satisfied? : N _

Solution. Since 7 is a prirhe mmnber (that fs, a number whose only
pcsxtlve infegral divisors are itself and one), it can be shown that if 7
divides the product ab and 7 does not divide @, then 7 dxvxd’as b.To
applﬁhxs mfarmatxon to the problem, we may write

(3530): 3% 4 6p% + 3p = 3p(p + 1)°.

* Since 7 does not divide 3, 7 divides p(p + 1). Since 7 is a prime number,

divisibility of {(p + 1)? by 7 would imply the divisibility of p + 1 by 7.
Obviously, 7 cannot divide both p and p + 1. Applying this informa-
tion, we know that 7 must divide either por p + 1. If p < 12, p must be
either 6 or 7. However, in base 6, the digit string 3630 is meaningless;
therefore, p = 7. From this it is easy to calculate 4 = (1344),,. If the

‘conditiop p < 12 is not satisfied, p may be any number of the form 7k

or.7k ~ 1, wherek = 1,2,... (:xcept for 7.1 — 1 = 6).
Problem 2. Prove that thelnumber 4

- (anén -1 ':’a,lao)s: »
that is, the number ‘

@y P+ l.ﬂa—z'P"Ll trtap G,
is divisible by p — 1 il and only if p — 1 divides-the sum

a,l+(1,‘_1 +"'+al+30-
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(Compare this general problem with the dmsxbxhty test for 9 in the
sdecimal system and with the dms:bxhty test for 11 in the duodeclmal

~ system.) . A

¢

-
N

-~ . &mmnsxySym
The smallest integer that can be used as the base of a numbcr systcm

.‘xs 2. Jhe binary (base 2) system is oge of the very oldest. it is encoun-

tered, although in a very incomplete form, among severdl Australian
-and Polynesian tribes. The convenience of the system is its extraordinary '
simplicity. In the binary system ‘we have only two digits, 0 and 1, and !
the number 2 is a unit.of the secosd ordar. The rules for operations on
binary numbers are very simple. The basxc rules for addition’are ngen

by S |
e 0+0=0, 04+1=1, I+ 1 =10,

and the mp];ibﬁcaﬁoh table for the binary system has the form

: oo . SN
- . .
. 01 '
0ololo
10141

A slight disadvantage of the binary system arises as a result of the

small size of the base. This means that writing even moderately large .

numbers requires the use of many places. For examplé, the number 1000
is written in the binary system in the form AN

o

=< 1111101000,

" using ten digits. However, this disadvantage is often compensated for by

the convenience of the binary system in modern technology, especially in
the use of computers.

We shall talk about the technological applications of the binary
system later, but, for the present, let us consider two problems connected
with binary number notation. .

Problem 1. 1am thinking of some base 10 integer between 0 and 1000.
Can you find ougewhat the number is, asking no more than ten “ yes or
no”” questiorrS” This problem is completely solvable,

One possible series of questions automatically leading to success is:

)

-
.

»
.
Lo
.



18 The Binary System
First quedtion: * Is the number you are thinking of evenly divisible by
27" If the answer is yes, we write down the number zero; if not, we

write down the number one. (In other words, we write dogwn the\re-
mainder obtained by dividing'the ‘‘secret” number by 2.)

Second question: * Divide the quotient, which you obtained from the -

~first division, by 2. Is it evenly divisible?”” Again, if the answer is yes,
we write a zero, and if it is no, we write a one.

Each su g question will be of the same form, that is, * Divide
the quotient, whith was obtained from the previous division, by 2. Is it
evenly divisible 7”* Each time, we write a zero if the answer is-affirmative
and a one if the answer is negative. N

Using this procedure 10 times, we obtain 10 dxgxts eadh of which is
either zero or one. It is easy to see that these digits form the binary
represcntatxon of the desired number in-fgverse order. Actually, our
system of questions reproduces the procedure by which a number is
translated into the binary sysqem The ten questxons are eg(ough because
every number from’1 to 1000 can be written in binary rotation using no
more than ten places (smoe 1024 = 219), Jf the intended number had
been wtitten in binary notation in thefirst place, it would have been
clear how our ten questions were functioning: We were actually asking

. whether each of-the digits was a zero or a one. -

Let us consider another problem which is closely related to this one.

Pmblem 2 I have seven tables, each of which contains a chessboard )

of 64 squares (fig. 2).
In, each square is written a num rom 1 to 127. Choose one of
these nurmbers, and tell me in which of the tables (they are numbered

" from 1 to 7) that number is located. 1 can name the number. How?

Here is the solution to this uncomplicated problem:

Let'us write every number from 1 to 127 in binary notation. None of
these representations has more than seven places, smc¢ 127 = (1111111)2
We put a number A4 in the kth table (k = 1,2,..., 7) if, in its bmdry
representation, the Ath place f) the right has a 1, and we do not write

it there if the kth place’1s ed by a zero. For gxamplg, the number
517, which is written in b%méry notatio;&eas .
1] o -
0t11001, . A

would be contained in the first, fourth, fifth, and sixth tables, the
number 1 only in the first table, the number 127 in all of the tables, and
so on. In this way, if we know in which tables a number is contained, we
know its bmdry rcprescnta’imn All we need do is translate it into the
decimal system ) v
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o 1] 31 s{ 71 o 11]13]15 3 3] 6 11] 141 15

]
S

17) 19] 21,23] 25| 27| 20431 | 18] 19 22{°23| 26| 26| 30| 31

331 35] 37| 39| 41| 43] 45 47 34| 35| 38) 39| 42| 43| 46| 47

* -} 49 51} 83| 55| 57| 59} 61} 63 50! S1} 84| 55} S8| 59 a2| 63

&S| 671 69| 71| 73} 15[ 77T} 79 66| 67, .70] 71| 74| 75; 78| 19

81 831 85| 87! 89] 91 93| 95 82| §3| 86| 87| 90| S1| 94| '9S

971 9911011103105} 107]109 111 98{ 99/102/103{106{107{110j111

T13]115{117{119{121}123 112851127 | | 114{115{118{119{122/1231126127

1. - 2
.~ T a] s] e 7] 12] 13 14] 15 8] o 10] 11] 12} 13} 14] 15
’ - 20] 21] 22| 23] 28} 29| 30| 31| { 24| 25| 26| 27| 28] 25 30|.3
oot 36] 37] 38| 39| 44| 45| 46| 47| | 40] 41| 42] 43| 44| 45| 46| 47
52| 53} 54 55| 60| 61] 62{ 63| | 56| 57| 58} 59} 60 1]-62] 63
68| 69| 70| 71| 72| 77| 78] 797| { 72| 73] 74| 75| T6| 77| 7879
< [ sal 88] 86| 87| 92 93| 94| 95| | 88| 89| 90| 91| 92} 93] 94! 95

1001101 102110311081 109{110}111 104 (105{106{1071108 109 IJO 111

- J161117}118] 119124/ 1251126127 120{121{1221123{124]125}126 127

3 4
. | ;
16] 171 18] 19| 20§ 21} 221 23 32] 33; 34! 35| 36] 37 38/ 39
240 25 26, 27] 281 29] 30! 31 407 41 _42 43 44 45| 46| 47
48] 49| SO| S1| S2| S3| S4} S5 48! 49! SOi S1{ 52! 53] 54| S5
56] 57| S8/ 59| 60) 61} 62| 63} | 56| 57 58! 59 60) 61! 62] 63

80{ 81| 82| 83} 84, 85| 86 87 96| 97| 98| 99/100{1011102{103

1 88] 89 90! 91 92| 93} 94| 95 104)105)106, 107,108 IOQFHO 111

PI2{113]114] 118 116]117{ 118|119 || 112{113}114|115]116/117]118 i19

1201121]122}123]1241125/1261127 1200121112211231241125{126{127

72| 73| 74| 75| 76| 77} 78] 79 N
80| 81| 82| 83| 84! 85| 86| 87|
88| 89| 90| 91| 92| 93| 94| 95
96| 97| 98] 99100{101/102{103
. ©11041105]106/107/108/109{110}111
112]113]114{ 115} 116/ 117{118}119
120{1211122}123]124/125{126}127

N " Fig. 2

2k
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The question can be reversed: Choose a number from 1 to 127, and
1 will tell you in which of thg tables in ﬁgure 2 it is located and in which
it is not. To answer the question, all we need do is translate the given
number into the binary system (with a little practice this is not diffieult
to do inhyour head) and theht simply name those places that are occupied
byal.? :

The above discussion leaves one unanswered question, however. Why'

.are there exactly.sixty-four numbers in each table ? Let us consider table

k (k = 1,2,.7.,7) in which we have written all numbers from 1 through
127 which have a one in the kth place from the right. To each of these
numbers, there corresponds a unigue number which is derived from the
first by substltutmg 0 for 1 in the kth place. This second number, of

course, will not be in table k; yet it will be between 0 and 127 inclusive

Py

(and will be zero only when the ongmal number has 1 only in the kth
place). Furthermore, all the numbers not in fable & derived by this
correspondence will be distinct (as is easy to verify); and each number |
not in table k can be derived from some number in table k by the corre-
spondence. Thus, if there are n numbers in table , there must be n — 1
numbers not in table k& (discounting zero, and allowing only numbers
from 1 through 127), so that the following deduction holds:

n+ -1 =127; , (ﬁ)
20 — 1 =127,
-L . m=128;
n=64.

" Since this is true for all k = 1,72, ..., 7, there must be exactly 64 num-

bers in each table. - - y

£l

9. The Game of Nim

A game called “Nim” was popular in ancient China. It involves
three piles of §tones; two players alternate in taking stones from the
piles; in each turn a player can take any nonzero number of stones
from any pile (but only from one), The winner is the one who-takes the

- fast stone. -

Nowadays more convenient objects are used in place of stones—for
example, matches. The problem lies in clarifying the optimal strategy
for each player. -

2. In each of the abbve-mentioned tables, the numbers are written in order of
increasing size, making the structure of these tabies fairly easy to discover. How-
ever, within cach of the seven tables, the numbers can be rearranged quite arbi-
trarily, hiding Yhe method by whnch the tables were constructed.
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* The binary gystem is helpful in solving this problem. Suppbse that

there are g, b, and ¢ matches in the three piles. We write the number's

a, b, and ¢ in binary notation:

a=a-'2“'.'*‘ a,...;~2"—1+-'-+ 01‘2+a°,
b nb-.zﬂ +kb'_x.'2‘—1 +"'+b1'2 +.b‘0’ A
< Ec,-z" +€‘_1‘2‘—1 +---+ C;'2+Co.

If necessary, we put zeros in front of the numbers which have fewer

digits. In this way, each of the digits ag, by, Cosz- -9 Goms b, cs can be ‘

equal to either O or 1, with at least one of the digits a,, by, and ¢, (though
not necessarily all) different from zero. The player who gaes first may
replace one of the numbers q, b, or ¢ with any smaller number. Suppose

that he decides to take matches from the first pile, that is, to change the

number g. This means that some of the digits a,, a,, . . ., gy Will be
. changed. Analogously, in taking the matches from the second pile, the
player would change at least one of the digits b,, . .., by; and, takmg
matches from the third pile, he would change at kmst one of the digits
CO’ Ceey C‘ . o

Now.consider the sums

au+bn+cnsan—1+bn—l+C-+1:.‘":ao+b0+c0-’ (*)

Each of these sums can equal 0, 1, 2, or 3. If at least one of these sums

is odd (that is, equals 1 or 3), then the player with the firs{ turn is
assured of victory. In fact, let a, + b, + ¢, be the first (counting from
the left) of the sums in (+) which are odd. Then at least one of the three
numbers a, by, and ¢, is equal to 1. Assume, without loss of generality,
that g, = 1. Then the first player can take from the first pile any
number of matches such that the coefficients ay, ..., gc,; do not
change, a, is equal to 0, and every one of the coefficients a;_5,.. .,
a, can take whatever value (0 or 1) the player desires. Thus, the
~ player can take a number of matches from the first pile such that all the
sums :

-

ey + bk—I + Cx-1y.-.9 80 + bQ + o

become even.

In other words, the first player can arrange it so that after his turn
all the sums in (x) have become even. The second player, m makifig his
move, cannot help but change the evenness of af¥east one of the sums,

since he must change at least one digit in some number, but in only one
" .

5.1



2 _ The Game of Nim &

number. This means that after his turn we again have the situation in
which at least one of the sums in (*) is odd. The first player, in his next
move, can again even out all the sums. And so, after every turn of the
first player, all the sums in (%) are even, and after every turn of the second
player, at least onc of these sums is odd. Since the total number of
matches decreases after every turn, we eventually reach the situation
where all the sums in () are zero—there are no matches left. Since all
sums are cven when and only when the first player has just taken his
turn, the first player must have taken the turn that reduced all the sums
to zero, and so he must have taken the last match; he has won.

For example, suppose that mmdlly a=7b=6,and c =2 We
would then write

g = (1), ;
b =(110); ;
¢ = {010); .

&

The sums of interest Would be

gy + by b ca=1+1+0=2,
a1+b‘+C1:l+]+l=3,
ao+_bo+CQ=1+0+0—_—1

-

The “first” odd sum is @, h + €1~ 3. The first player may then

1 to 0. But he must also arrgnge for a, + bo + ¢o to be even, so he must
. also change a, from 1 to 8. The result is the subtraction of (011), =
stones from the first_pfle, leaving

a= 4= (100);;
bh=6=(110);;
¢ = 2= (010);.

The sums
ag+b2+(‘2:2, ' \\

a, -+ b; *FCI :.2,
ag+ by + ¢ =0

are then all even. + .
The second player may decide to draw three stones from the first pile

Y

taef
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(xt doesn't matter what he decxdcs if the first player knows the opt:mal
stratcg, he has no chance). This would leave

- a=1=(001),;
b=6=(10),;
. e = 2 = (010),,

and g

ag+bg+.(.'2=l,,
a1+b;+c1=2, !
Qo+ b+ ¢ =1,

* The first player must then decide to draw from pile two, in order to
change b, from 1 to O (the only way to even out a; + b; + ¢; without
adding stones). In doing so, he must change b, from 0 to 1, while
leaving b, fixed. In-other words, he must change 5 from (110); = 6 to

: (011)2 % by drawing 3 stones. This leaves

¢

Suppose the second player decides to simplify the game by removing the
stone from the first pile (again, it doesn’t matter what he dwnées) This
feaves (omitting the first pile)

c=2=(0)s, -

" and

b1+C1=2,
bQ+CQ=1.

-

The first player then removes one stone from the second pile, so that
4 b=c=2=(10);
b; + ¢y = 2 N
bo + ¢ = 0 .

At this point, the second player will not remove one of the piles, for
: J

L S of




by using the above strategy. =,/

,
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that wouid mean instant defeat. Instead, he dxaws pns stone, say from
the last pile, leaving : e
b=2=(10,; ,.
Ce=1m(O); T,
b=V i
ba‘+Co = 1‘. ’ _‘2,';*,“

o ' s

The first player must chaiige both the first and second places in one of
the numbers; this can be accomphshed only by chsngmg b from
(10)g = 2 to (01); =1 Then & -

and the second player must remove one of the. stonm, after whxch the

first player removes the other and wms

If ali the sums in (+) are mmallg even, the first player’s first turn
makes at least one of the sums odd, a}iovnng the

Thus, if the optimal strategy is ¥nown to bot.h players,
b, and ¢ completely determine the result.

Of course, three numbers that would give the. second layer victory
rarely occur, and so in the long run the first player will do far better '

‘than the second. For exampie, there are eight ways to divide ten matches

(@ + b + ¢ = 10)into three piles. ‘Seven of these arrangements detcrmmc
victory for the first. playcr while enly one favors the second. ‘

At least one important questmn is raised, however. Could mor¢

“optimal”’ stratchcs be deviseg, using number systems o bases other
than 27 For example, could the ternary system be nsed so that the first
player’s object would be:to. make the sums of corrcsponding digits all
divisible by 37 The answer is no since, when a base p number system is
used, the *optimal”, stratcgy breaks dewn as soon as the combined
total of the numbex of matches: iff the three piles becomes less than p.
In this sxtuanoni it is 1mposs:b2e for the first player to arrange for the
sum of the d:gns in the mnits’ place to be divisible by p (unless two pil€s
have been exhausted) If,in addition, not all of the binary sums of interest
wese even, the second player could apply the binary strategy to win.
Such a situation (ould occur if the first player, using the terpary
strategy, left exactly one match in each pile after his turn. The remaining
turns of both players would then be determined, and the second player
would draw the last match.
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The effectiveness of the binary\,sy'stcm in this application lies in the

fact that if fewer than two match#s rémain in all three piles combined,
then only one match remains, an;l the first player can win simply by
drawmg the match

10. The Binary C;>de and Telegraphy

One of the oldest technical uses of the binary system is the telegraph
code. We write the letters of the alphabet and a space denoted by
“——", numbering them from 0 to 26:

———,A.BCDEFGHIJKLM
0 1 234 56 7.8 91011 12 13
N OP QR STUV WX Y Z
1415'1617181920212223242526

Each of thcse numbers (0 through 26) can be written in the bmary system
using no more than.five digits, since 2° = 32 We obtam

--------------

-

Suppose that we have five conductors jciniﬂg two points. Then each
five-digit figure representing a unique letter of the alphabet can be sent
from one point to the other using a definite combination of electrical
impulses: Say we let no signal stand for 0 and an impulse on the appro-
priate conductor stand for 1. At the point of reception this combination
of impulses will set into operation a printing apparatus which will print
the letter corresponding to the given combination of impulses (and thus
to the given binary number). .

" The telegraph is, in principle, a combination of two apparatuses. an
initial mechanism which translates the message into a system ‘of im-
pulses to be sent across the connecting lines, and a receiving mechanism
which translates the impulses into a combmatxon of letters via a printing
mechanism.?

3. We have been speaking of two points linked by five conductors. However,
we can manage with only one conductor by transmiiting each letter as a succession
of five binary digits (impulse or no impulse).

S @‘\‘, Fre
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In this way, the case of translating binary numbers into a system of
electrical impulses deads to afuscful application of the bmary system in

telcgraphy

11. The Binary System—A Guardian of Secrets

. Telegraph and radio-telegraph provide for fast transfer of in-
~ formation. However, telegraph messages are easily intercepted, and
- sometimes, mpemally in military mattess, information must be made
accmsxbiernly to the intended recipient of the méssage. Thcrefoxt, we
must resor to coding methods. -
We have all, at some time, used codes and conducted * secret corre-
spondences.” The simplest type of code is constructed by rgpresenting

each letter of the alphabet by some symbbl: another letter, a number,.

a convenient mark, and so on. Such codes are often important in
. detective and mystery stories; for ‘example, Conan Doyle’s “The
Adventure of the Dancing Men and Jules Verne's Journey to the
Center of the Earth. Such codes are easily broken.

Any language, including Russian or English, has a definite strueture:
Some letters and letter combinations occur often, some less often, and
others (for example, a w following a ¢ in English) not at all. This
structure is independent of the choice of alphabetic symbols, and so it
remains after coding, allowing us to discover the coding system and the

actual message. Even coding systems far more complex than those of

this type yield their secrets to an experienced decoder.
It becomes necessary, then, to devise a code which cannot be deci-

phered by such simple means. One such code is based on the binary.

_number system and on a variation of the system of letter representation
we discussed in the last section,

Using the telegraph code, we can represent any message by a definite
sequence of five-digit cdmbinations of zeros and ones. Suppose we set
up in advance some absolutely arbjtrary sequence of such five-digit
binary numbers. Such a sequence, intended for coding a text, is called a
scale. We make two copies of the scale, writing it as a combination of
holes in a special paper tape (fig. 3), in which every row across on the

tape contains some five-digit combination, a punched hole representing

a one, and the absence of a hole representing a zero.

4. In addition to the coding system we have constructed, there is a widely
accepted coding system called the"Morse code, which also relies on representations
of letters using combinations of two symbols—in this case, dots and dashes. We
shall not discuss the details of the Morse code system here.

. !
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"'We keep one copy of the scale and send the other to the person with .

- whom we have a telegraphic connection. We now combine our message

. with the “arbitrarily” prepared scale in the following way: We “com-
,(--bme” the first five-digit number (the first letter) of the message with the.

- first- number of the scale, the second number of the message with the
second number of the scale, and so on, “adding” in ca}umns under the

-

0@0=0, 1®0=0+1=1, 1®L=0;

that is, without carrying the sum of two units into the next place. The
operation @ is called ** addition modulo 2”; clearly, such a method of
combining two binary numbers yields a O digit in each place in which
the corresponding digits of the two numbers are equal and a 1 in each -
place in which they are not. The resuit of such a combination of the text
and the arbitrary scale can then be transferred as a sequence of electrical
signals to our addressee. To restore the original message he need only
add the same scale to the text in the manner described above.

The whole process can be described as follows:

‘1. text @ scale = coded text;
2 coded text @ sca\le = text @ scale (P scale = text.

It is not hard to see that for the purpose of sending a single message,
this code is no better than the letter representation code of the last sec- |,
tion; the scale serves only to permute the numbers which are assigned
to our twenty-seven symbols. But when this code is used to send many
different messages (using many different scales), the would-be decoder
is faced with the task of breakjag a new code with each message, even
‘though no added hardship isftmposed on those who know the code and
its scaling principle. The code is far from * perfect,” however, since an
adversary with unlimited resources, eyen if he never discovered the
scaling principle, could, in theory, break ¢ach new code in the same way
as the letter representation code can be broken.

34
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This entire process can easily be made automatic with the attachment
of an apparatus that would perform the operation of combining message
and scale to the transmitter, along with a similar apparatus to the re-
ceiver. -The telegraph operators serving the line need not even know
such mechanisms are present.

Of course, the binary system is especially convenient here because
each number, when “added” to itself, yields a ““‘sum” of zero, making
the coding and decoding operations identical. -

12. A Few Words about Computers

We have been speaking of the use of the binary system in a compara-
tively old province of technology, telegraphy (the first. telegraphic
aratuses based on transmission of clectrical signals via conductors
mwihe 1830s). We shall now consider one of the newest
fons of the binary system—computers. But first we must discuss,
although in very general terms, just what an electronic computer is.

The history of the development of computer technology is very

. lengthy and at the same time very short. The first devices designed t8

simplify the work of computation appeared long ago. For example,
ordinary calculators were used for accounting purposes over four
thousand yearg ago. Still, genuine ** machine mathematics” arose no
more than twenty-five years ago, when the first- high-speed computers
based on modern electronic technology (radio tubes and later tran-
sistors) appeared. In the short time the technology of computers
achieved striking success. Modern computers work at speeds up to
millions of operations per second; in other words, they perform in one
second as many operations as an experienced human armed with a

‘desk calculator can perform in several months. These machines have

allowed us to solve problems which are so complex that solutions by
hand would have been out of the question. For example, a modern
computer is capable of solving a system of several hundred simultaneous
linear equations with the same number of unknowns. A human
‘“computer” armed with a pencil, paper, and desk calculator could
not cope with such a problem in a lifetime.

When computers are mentioned in popular literature, we find ex-
pressions such as ‘‘the machine that solves complex equations,” *““the
machine that plays chess,’”” or ‘‘the machine that translates from one
language to another.” This can give the false impression that each such
function - solving equations, playing chess, translating, and the like -
is done by a specific machine built only for that purpose. However, all
these problems and *more--both mathematical (solving equations,
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constructing tables of logarithms, and so forth) and nonmathematical
(translating a text or playing chess)-—can be solved by one machine, the
so-calleqq universal computing machine. Strictly speaking, every such
machingfcan perform only a very limited number of elementary opera-
tions: gdding and multiplying numbers and storing the results in the
machine’s “ memory,” comparing numbers, choesing the largest or the
smallest of two or more numbers, and the like. However, the solutions
of the most diverse and complicated problems can be reduced to
sequences (possibly very long) of such elementary operations. Such a
sequence of operations is defined by a * program.” Thus, variety in the
problems which can be solved by a universal computing machine leads
to variety in the programs fed into this machine. )

In doing computations by hand or by computer, we must agree on
some number system. When working with pencil and paper, we, of
course, use the decimal system to which we are accustomed. However, -
the decimal system is hardly suitable for electronic computers. Such
machines have a decided preference for the binary system, We shall now
attempt to find the reasons for this.

13. Why Ele}ctrqnic Machines *‘Prefer’’ the Binary System”

When we perform a computation by hand, we write the numbers on
paper in pencil or pen. For a machine, however, some other method of -
storing the numbers with which it is operating is needed. -

To clarify this problem, cepnsider, for the moment, not a computing
machine, but a far simpler apparatus- -an ordinary counting device
(electric meter, gas meter, taxi meter, and so on). Evex:y such counter is
composed of several discs, each of which can be situated in one of ten
positions, corresponding to the digits from 0 to 9. It is clear, then, that,
an apparatus consisting of & such discs can serve to store one of 10¥
different numbers, from 0to 10¥ — 1. Such a counter could very well be
used-for computation; that is, it could be used not only to store numbers
but also to perform arithmetical operations. ’ ‘

In general. a counter suited to a number system with base p is a system |
of discs, each of which has p differént positions. In particular, the
apparatus with which binary numbers could be stored should contain a
number of objects, each of which would have two possible positions.
It is clear that we need not use discs as the counting apparatus. In
principle, a counter can consist of any collection of convenient elements,
the only requirement being that each of the elements be able to take on
as many stable conditions as there are units in the base of the number
system being used.
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A counter employing a system of wheels or any other mechanical
apparatus changes its state relatively slowly. The speed with which
modern computers work —millions of operations per second—is '
. possible only because these machines work electronically rather than
mechanically. Such machines are practically devoid of inertia and,
therefore, can change their state within a time interval of a mlllxonth
of a second. ‘

Eiectronic elements (vacuum tubes, transistors) typically have two
stable conditions. For example, an electric bulb can be “on” (when
current is passing through it) or *off” (when current is not passing
through it). Semiconductors, now widely used in computer technology,
operate by the same principle. This property of electronic elements is
the basic reason why the binary system has proved to be the most
convenient one for computers. ‘

The input data for solving a problem is usually given in the conven-
tional decimal system. Therefore, so that a machine based on the binary
. system can use the data, we must translate it into binary represcntanon
a languags that the machine’s arithmetical ‘apparatus can *‘under-
stand.” Such a translation is simple to accomplish automatically, of
course. We also-want the results of the computer’s computations to be
" written in the decimal notation. Therefore, the computer generally
must transiate the result from the binary system into the decimal system..
* Computers sometimes use a combined binary-decimal system. In this
system, a number is first written in the ordinary decimal system, and
then each of its digits is represented, using zeros and ones, in the-binary
system. In this manner, the binary-decimal system represents every
number as several groups of zeros and ones. For example, the number

V/ 2593
is written an the binary-decimal system as
0010 0101 1001 0011 o
In comparison, the binary reprcseniatio;; of the same number is
101000100001 . ,
Let us see how a computer based on the binary. number system per-
forms arithmetic operations. The basic operation which we should

consider is addition, since multiplication reduces to iterated addition,
subtraction reduces to dddition of negative numbers, and, finally,
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division reduces to iterated subtraction. In turn, the addition of multi-

digit numbers reduces to performing the appropnate addition place by .

place.

The addition of two binary numbers place by plaoe can be described
as follows.® Let a be the digit in a given place in the first summand; b,
the digit in the same plage in the second summand; and ¢, the digit
which we have to carry from the preceding place (where, we are assum-
ing, the addition has already taken place). To perform the addition in
the given place is to indicate which digit (0 or 1) needs to be written as
&he “sum™ and which digit must be carried to the next place.

wAWe denote the digit that must be written in the given place of the sum
’by the letter s, and the value that we have to carry to the next place by
“the letter ¢, Since each of the quantmes a, b, c, 5 and t can take only a
value of 0 or 1, all the possible variants involved are contained in thé
following table:

a i l1li1l1lolololo

b | 1l1{olol1l1]olo

e 1lol1]lo]1loel1]o

s 1t{olo{1lof1|1]o0

. 1 111 /{1lol1]lo0]lo0o]o

Thus, so that a computer can add two numbers written in the binary

system, for every place there must exist an apparatus having three

inputs corresponding to the values a, b, and ¢, and two outputs corre-
- =sponding to the values s and 7. Let us assume, as it usually occurs in
. electronic machines, that | is represented by the presence of current in
. the given input or output and O by its absence. The apparatus under
. consideration, called a single-digit adder, should work in an analogous
wdy with the table above, that is, so that if there is no current in any of
the three inputs, there will be none in either of the outputs; if there is
current in @, but not in b or ¢, there should be current in s and nonein 7,
and so on. An apparatus working by this scheme is not hard to con-
struct using vacuum tubes or transistors, .

-

14. One Remarkable Property of the Ternary System

In any evaluation of the ‘‘ convenience’ of a given number system, at
least two criteria come into play: the simplicity of arithmetic computa-
tion in the system, and what.is referred to as the “economy” of the

5. We speak here of the ordinary arithmetic addition and not the addition

modulo 2 mentioned in section 11, in connection with a coded text. However,
addition modulo 2 also has an essential place in the opetation of a computer.
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32 One Remarkable Property of the Ternary System
system. Economy is measured by the quantity of numbers that can be

expressed in the number system with some arbitrary number-of symbols.

Let us clarify this with an example. In order to write 1,000 numbers
(from 0 to 999) in the decimal system, we need 30 ““symbols™ (10 digits
for each place). In the binary system, we can write 2*° different numbers
using 30 * symbols '’ (since, for every binary place, we need only 2 digits,
0 and 1, and so, with 30 symbols, we can write numbers containing up to
15 binary places). But '

2% > 1000 ;

therefore, using 15 binary places, we can write more different numbers
than we can with three decimal places. In this sense, the binary system.
is more economical than the decimal system.

But which of all the number systems is the most economical? Let us
consider the following concrete problem. Suppose we have at our dispo-
sal 60 symbols. We can separate them into 30 groups of 2 elements each,
writing any number in the binary system using no more than 30 binary
places, that is, 23¢ numbers. We can also divide these 60 symbols into

" 20 gioups of 3 elements each and, using the ternary system, write 33°
-different numbers, Furthermore, by separating the 60 symbols into 1‘5\
415

groups of 4 elements each, we can apply the base 4 system and write
numbers, and so forth. In particular, if we used the'decimal system
(that is, separating all the symbols into 6 groups of 10 elements each),
we could write 108 numbers, but if we used the Sexagesimal (base sixty)
system, 60 symbols would allow us to write only 60 numbers. Let us
find out which of the possible systems is the most economical; that is,
which one allows us to write the greatest quantity of numbers using only
60 symbols. In other words, we are asking which of the numbers

290,330 415 512 610105, 125, 154, 20°, 30%, 60

is the largest. It can be verified by calculation that the fargest number is
320, We first show that

250 < 330,

. g . . -
Since 2% = (2%)'° = 8!° and 3%2° = (39)1° = 9'°" we can write our
inequality in the form

815 < 910 i /

In this form, our result is obvious.

. ¥
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Furthermore, ' '

“ 415 = (23)16 = 280, ‘ . .

Thus, by what we have j.u-st shown, | |

| 320 > 415,

Itis easy to verify ghat the following chain of in‘cqualit‘ies.is validy
415 > 513 > 6i° > 105 > 125 > 15¢ > 20° > 30° > 60.

Thus, the ternary system has turned,out to be most economical, with +
- the binary and base four systems ne{bsst. . _ o
This result is in no way dependent on’the fact that we were considering

60 symbols. We chose this example only because a group of 60 symbols
is easily divided into groups of 2, 3, 4, and so forth. | '

In the general case, if we employ n symbols and use some rumber x
for the base of the number system, then we can use 7/x places, and the
quantity of numbers that we can write will be equal to

xME

<

Consider this expression as a function of the variable x, taking got only
integral but any (fractional, i;rational) positive values.It is possible to
find the value of x at which the function achieves its maximum. The
function has a maximum at e, an irrational nimber which is the base of\‘
the so-called system of natural logarithms and which plays'an important
role in the most diverse questions of higher mathematics.® The, number
e is approximately equal to )

2.718281828459045 . ... E .

6. For the reader familiar with the elements of differential calculus, we give the
corresponding calculation. A necessary condition for a function y{x} to achicve
its maximum at a point x, is that the derivative of the function be zero at that
point. In the given case, -

_Y(X) = xMx Y ¢
The derivativej's cqual to

d d’ 4
Iﬁ = a [{X)M‘} = a(en in xlx)

(I! I ﬂ:fr)en lnxix

— }’%(1 — In x}e""‘”‘
= x%“ - In x)x™'* .
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- The c}oscst integer to e is 3, which serves as the base for the most,
economical number system.\
"~ The graph of the function y = (x)¥* is given in figure 4. (Note,
howcver that the x- and y-axes have different scales.) /
y /.
/
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“The economy of a number system isa sxgmﬁcant pmperty from the
staffddpoint of its use in computer technology. For this reason, although \ -
the use of the ternary system in place of the binary system in computers
involves some difficulties in construction (one must use elements that
can exist in three ‘rather than in two stable conditions), the ternary
system has ajrcady been tried in several emstmg computers

- 15. On Infinite Number Represe‘ntat’ions

Up to this paint, we have considered number system representations
only of the' integers. It is natural, however, to pass from the decimal
notation of whole numbers to decimal representation of fractions. To
do so, we must consider not only the nonnegative powers of 10 (1, 10,
100, and so on), but negative powers (10°, 10~2, and so on), arid
compose combinations in which we use these negative powers as well as
the others. For example, the expression 23.581 stands for

I !
©2-100 + 3100 + 5.10°Y + 8-10 %2 + 11073,

’ Fractions are conveniently represented as points on a line. We take a

Setting the derivative equal to zero, we obtain
inx =1, thatis, x = ¢.

Since the derivative dy/dx is positive to the left of x = ¢ and negative to the right,
co= e - weean usea-well-known theorem of differential calgulus to show that our function_
«  has a maximum at that point.
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line and choose a fixed point O (the origin of the line), a positive direc-
tion-(to the right), and a unit.of measure, the line segment OA (fig. 5).
‘We take the point O to stand for the number zero, and the point 4 to
stand for the number 1. Having laid the segment OA4 {9 the right of the
point O two, three, etc. times, we obtain points which represent the
numbers 2, 3, and so on. In this way we can represent all the integers
on a line. To represent fractions containing tenths, hundredths, and S0
on, we need only divide the segment O4 into ten, one hundred, and so
forth, equal parts and use these smaller ynits of length. We can thus
measure off points on the line corresponding to all possible numbers of
~the form

e Gy -G389.bibg- - by

that i.s, all possible finite decimal representations. In doing so, of course,
we do not obtain all the points of the line. For example, the endpoint of
a segment of the same length as a diagonal of the unit square (the square

. with side 1) does not correspond to-any finite decimal representation,

since the ratio of the length of a squarc’s diagonal to the length of its
side is irrational. ‘

If we want each point of the line to correspond to some number we
shail have to use not only finite, but infinite decimal reprcsentanons
Let us clarify the meaning of this last statement. :

In order to make every point of the line correspond to some (infinite)
decimal representation, we proceed in the following manner. For con-
venience, we shall speak only abot a part of the whole line, the line
segment OA —our unit interval. Let x be some point on this line seg-
ment. We divide O4 into 10 equal parts and number the parts using the
digits from 0 to 9. We denote the number of the section in which x

‘lies by b,. We now divide this smaller segment into 10 parts, numbering
these parts in the same way, and denoting the number (0 to 9) of the
smaller section by b,. We subdivide further in the same way, continuing
the process indefinitely. As a result, we obtain a sequence of digits
by bay. by’ ? ., which we write in the form '

.b}bg' "bn' e

L3

and which we call the infinite decimal representation (or infinite decimal
expansion) corresponding to the point x. If we break off this expansion
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at some point, we get an ordinary (finite) decimdl representation -
bbb, which defines the position of the point x only approxx-
mately (with an acouracy of a (10")th part of the unit i al).

In this way, we have assigned to each number x betwgén 0 and | an
infinite decimal expahsion. The correspondence can be extended to the
entire line, for if the number y lies between the integers n and-n + 1,
the number x = y — n lies between 0 and 1 and thus has some decimal
representation . .

¢ !

X = .byby- - b,
If the integer n has the decimal representation
il —1* Q140 ,

then y can be written

4

y=n+x :_—.‘akgk_x. . 'ﬂxﬂa.blbz' . 'bn' .
S \
It is n6t hard to see that some uncertainty inevitably arises from this.

~ In particular, having divided the segmerit O4 into 10 parts, we must
-consider, for example, the point on the boundary between the first and .
the second parts. We can consider it to be both in the first section
(having number 0) and in the second (having number 1). In the first
case, continuing the process of successive divisions, we will discover that
tht chosen point is in the rightmost (having number 9) of all the parts
into which we divide the segment at each step, that is, we obtain the
infinite fractxon
0.0999. . .,

&

while in the second case the point will be in each of the sections which
have number 0, that is, yiclding the fraction

0.1000. . .. .

Here we'have obtained two infinite representations corresponding
to one and the same point. The same thing will occur at any other
boundary point (between two segments) in any of the successive
‘divisions. For example, the fractions

0.125000... and 0.124999..

We can avoigd this ambiguity by agreeing td™hink consistently of
every boundary point as belonging either to the rightmost or the leftmost

'S

represent one z;;d/the same point,

Fn
)
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of the partial segments which it bounds. In other words, we can elimi-

nate either all fractions consisting of *‘ infinitely repeating’* zeros, or alﬁ :

fractions consisting of * infinitely repeating’’ nines.

If we introduce such a restriction, we can represent each point of the
ling by a unique infinite’ decimal gxpansion.

* That we have successively diyided the partial segments into 10 parts
1s, of course, immaterial, Ingte d of 10, we could have used some other
number, say 2, dividing each partial segment in half. In this way we can
represent eacﬁ' point of the line by an infinite sequence b,, bg, veoybyy ..
. of zeros and ones, which we write in the M ' ,

©.bibybyda ]

“and call an infinite binary representation {or expansiori). If we cut off
-this sequence at some place, we get the finite binary representation

(0-‘b1.bz‘ “+bp)a ‘

»

that is, the number

bl-i/2 + b2~1/2’ +‘ ‘,.+ b,‘~i/2",

approxxmatmg the point under consxderanon to within a (2")th part of
the unit interval.
~ Infinite decimal expanszons, thh which we can represent all the
‘points of the line, are a convenient tool in the construction of thetheory
of real numbers, which i§ fundamental in many aspects of.higher
mathematics. However, any other type of infinite expansions (binary,
ternary, and so on) can be used with equal success.
Before condudmg, let us consider the followmg instructive problem.
We take a line segment O4, divide it into three equal parts, and reject
its middle part (we consider the points of division themselves to be

members of the middle part—that is, they are also rejected; fig. 6). We.
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further divide each of the two remaining parts into three equal parts and
reject the center segments. After this there remain four small pieces,
from each of which we again take the middle third, We continue this
process indefinitely. How many points of the segment OA will remain
-undeleted ?

At first'glance we might say that only the endpoints O and 4 will
- remain: This conclusion is supported, it would seem, by the following
reasoning. We compute the sum of the lengths of all the segments
deleted by the above process. (We recall that we took the length of the

entire_segment O4 to be equal to 1.) At the first step we rejected 3

scgment of Iength 1/3, at the second step two segments of length 1/9,
at ‘the third four segments of length 1/27, and so op. The sum of the
lcngths of all fhe deleted segments is equal Io e .

. | ,), x/3+2/9+4/27+

-

This is an infinite geometric pro;a_;ression with first term 1/3 and ratio 2/3.
" By the wellcknown formula, its sum is equal to

€
]

T—23° o s

Thus, the sum* of the lengths of the deleted segments is exactly equal
to the length of the original segment O 4! !

And yet the above process leaves—bgsides O and A-—an infinite
number of undeleted points. To see this, we represent each point of the
unit segment OA by an infinite ternary-expansion. Each such representa-

tion consists of zeros, ones, and twos., We claim that the process of .

deleting the *“middle third™ leaves behind exactly thosé points which
correspond to ternary expansions containing no ones (composed
entirely of zeros and twos). In the first step we deleted the middle third

of the unit interval, that is, those points which correspond to ternary

expansions having a one in the first place. In the second step we deleted
the middle third again, removing the expansions which have a-one in the
" second place, and so forth. (Here we delete those points that can be
represented by two ternary expansions if one of these expansions con-
tains a one. For example, the endpoint of the first third of the line
segment OA, the number. /3, can be represented by the ternary expan-
sions .

0.1000. ..

i A 4«5
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and
| 0.0222.. -.f;

this pomt we delete.) And so, thc process leaves exactly those points
which correspond to ternary expansxons consisting dnly of zeros and -
twos. But there are infinitely many such numbers! Consequently,
besides the endpoints, there will still remain infinitely many undeleted
pomts For gxample, thc point that corresponds to the rcpresentatxon

0.020202. ..

(the ternary expansion of the number 1/4) will remain. The infinite
" ternary representation 0.020202... actually signifies the sum of the
geometric progression

2377423744 2.37°% 4. ..,

]

- which, by the formula, is equal to

219 29 _ . .
1—1/9 89 L4 ) .

By using the following geometric argument, we can persuade our-
selves that the point 1/4 will not be deleted. The point 1/4 divides the
whole interval [0, 1] in a ratio of 1:3. After the removal of the segment
[1)3, 2/3], the point 1/4 remains in the haif-open interval [0, 1/3), which
it divides in a ratio of 3:1. After the second deletion it remains in the
.open interval (2/9, 1/3), which it divides in a ratio of 3:1, and so on.
At no step will the point 1/4 be removed. ¢

Thus, it turns out that the process of deleting the **middle third ”
leads to a set of points which, although it *takes up no space at all” o
the line segment (since the sum of the lengths of the deleted segmcnts xs
equal, as we have made clear, to one), contains infinitely many points.

This set of points possesses other interesting properties; however,
to study them would. requite an exposition of concepts beyond thc
scope of our little book. Thus, we end here,
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